SIMBAD references

2018ApJ...863...61L - Astrophys. J., 863, 61-61 (2018/August-2)

An ALMA survey of faint disks in the Chamaeleon I star-forming region: why are some class II disks so faint?

LONG F., HERCZEG G.J., PASCUCCI I., APAI D., HENNING T., MANARA C.F., MULDERS G.D., SZUCS L. and HENDLER N.P.

Abstract (from CDS):

ALMA surveys of nearby star-forming regions have shown that the dust mass in the disk is correlated with the stellar mass, but with a large scatter. This scatter could indicate either different evolutionary paths of disks or different initial conditions within a single cluster. We present ALMA Cycle 3 follow-up observations for 14 Class II disks that were low signal-to-noise (S/N) detections or non-detections in our Cycle 2 survey of the ∼2 Myr old Chamaeleon I star-forming region. With five times better sensitivity, we detect millimeter dust continuum emission from six more sources and increase the detection rate to 94% (51/54) for Chamaeleon I disks around stars earlier than M3. The stellar-disk mass scaling relation reported in Pascucci et al. is confirmed with these updated measurements. Faint outliers in the Fmm-M* plane include three non-detections (CHXR71, CHXR30A, and T54) with dust mass upper limits of 0.2 M and three very faint disks (CHXR20, ISO91, and T51) with dust masses ∼0.5 M. By investigating the SED morphology, accretion property and stellar multiplicity, we suggest for the three millimeter non-detections that tidal interaction by a close companion (<=100 au) and internal photoevaporation may play a role in hastening the overall disk evolution. The presence of a disk around only the secondary star in a binary system may explain the observed stellar SEDs and low disk masses for some systems.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): binaries: close - protoplanetary disks - stars: pre-main sequence - submillimeter: planetary systems

Simbad objects: 23

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018ApJ...863...61L and select 'bookmark this link' or equivalent in the popup menu


2021.07.31-09:14:21

© Université de Strasbourg/CNRS

    • Contact