SIMBAD references

2018MNRAS.474..197P - Mon. Not. R. Astron. Soc., 474, 197-218 (2018/February-2)

Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle.

PASTORELLO A., KOCHANEK C.S., FRASER M., DONG S., ELIAS-ROSA N., FILIPPENKO A.V., BENETTI S., CAPPELLARO E., TOMASELLA L., DRAKE A.J., HARMANEN J., REYNOLDS T., SHAPPEE B.J., SMARTT S.J., CHAMBERS K.C., HUBER M.E., SMITH K., STANEK K.Z., CHRISTENSEN E.J., DENNEAU L., DJORGOVSKI S.G., FLEWELLING H., GALL C., GAL-YAM A., GEIER S., HEINZE A., HOLOIEN T.W.-S., ISERN J., KANGAS T., KANKARE E., KOFF R.A., LLAPASSET J.-M., LOWE T.B., LUNDQVIST P., MAGNIER E.A., MATTILA S., MORALES-GAROFFOLO A., MUTEL R., NICOLAS J., OCHNER P., OFEK E.O., PROSPERI E., REST A., SANO Y., STALDER B., STRITZINGER M.D., TADDIA F., TERRERAN G., TONRY J.L., WAINSCOAT R.J., WATERS C., WEILAND H., WILLMAN M., YOUNG D.R. and ZHENG W.

Abstract (from CDS):

Supernova (SN) 2016bdu is an unusual transient resembling SN 2009ip. SN 2009ip-like events are characterized by a long-lasting phase of erratic variability that ends with two luminous outbursts a few weeks apart. The second outburst is significantly more luminous (about 3 mag) than the first. In the case of SN 2016bdu, the first outburst (Event A) reached an absolute magnitude Mr ≃ -15.3 mag, while the second one (Event B) occurred over one month later and reached Mr ≃ -18 mag. By inspecting archival data, a faint source at the position of SN 2016bdu is several times in the past few years. We interpret these detections as signatures of a phase of erratic variability, similar to that experienced by SN 2009ip between 2008 and mid-2012, and resembling the currently observed variability of the luminous blue variable SN 2000ch in NGC 3432. Spectroscopic monitoring of SN 2016bdu during the second peak initially shows features typical of an SN IIn. One month after the Event B maximum, the spectra develop broad Balmer lines with P Cygni profiles and broad metal features. At these late phases, the spectra resemble those of a typical Type II SN. All members of this SN 2009ip-like group are remarkably similar to the Type IIn SN 2005gl. For this object, the claim of a terminal SN explosion is supported by the disappearance of the progenitor star. While the similarity with SN 2005gl supports a genuine SN explosion scenario for SN 2009ip-like events, the unequivocal detection of nucleosynthesized elements in their nebular spectra is still missing.

Abstract Copyright: © 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): supernovae: general - supernovae: individual: (SN 2016bdu, SN 2005gl, SN 2009ip, SN 2010mc, LSQ13zm, SN 2015bh)

Status at CDS : Large table(s) will be appraised for possible ingestion in VizieR.

Simbad objects: 28

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2018MNRAS.474..197P and select 'bookmark this link' or equivalent in the popup menu