SIMBAD references

2018MNRAS.474.4571T - Mon. Not. R. Astron. Soc., 474, 4571-4583 (2018/March-2)

Ensemble candidate classification for the LOTAAS pulsar survey.

TAN C.M., LYON R.J., STAPPERS B.W., COOPER S., HESSELS J.W.T., KONDRATIEV V.I., MICHILLI D. and SANIDAS S.

Abstract (from CDS):

One of the biggest challenges arising from modern large-scale pulsar surveys is the number of candidates generated. Here, we implemented several improvements to the machine learning (ML) classifier previously used by the LOFAR Tied-Array All-Sky Survey (LOTAAS) to look for new pulsars via filtering the candidates obtained during periodicity searches. To assist the ML algorithm, we have introduced new features which capture the frequency and time evolution of the signal and improved the signal-to-noise calculation accounting for broad profiles. We enhanced the ML classifier by including a third class characterizing RFI instances, allowing candidates arising from RFI to be isolated, reducing the false positive return rate. We also introduced a new training data set used by the ML algorithm that includes a large sample of pulsars misclassified by the previous classifier. Lastly, we developed an ensemble classifier comprised of five different Decision Trees. Taken together these updates improve the pulsar recall rate by 2.5 per cent, while also improving the ability to identify pulsars with wide pulse profiles, often misclassified by the previous classifier. The new ensemble classifier is also able to reduce the percentage of false positive candidates identified from each LOTAAS pointing from 2.5 per cent (∼500 candidates) to 1.1 per cent (∼220 candidates).

Abstract Copyright: © 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): pulsars: general - methods: data analysis - methods: statistical

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018MNRAS.474.4571T and select 'bookmark this link' or equivalent in the popup menu


2021.05.06-11:31:30

© Université de Strasbourg/CNRS

    • Contact