SIMBAD references

2019A&A...627A.177R - Astronomy and Astrophysics, volume 627A, 177-177 (2019/7-2)

Non-LTE analysis of K I in late-type stars.


Abstract (from CDS):

Context. Older models of Galactic chemical evolution (GCE) predict [K/Fe] ratios as much as 1dex lower than those inferred from stellar observations. Abundances of potassium are mainly based on analyses of the 7698Å resonance line, and the discrepancy between GCE models and observations is in part caused by the assumption of local thermodynamic equilibrium (LTE) in spectroscopic analyses. Aims. We study the statistical equilibrium of KI, focusing on the non-LTE effects on the 7698Å line. We aim to determine how non-LTE abundances of potassium can improve the analysis of its chemical evolution, and help to constrain the yields of GCE models. Methods. We construct a new model KI atom that employs the most up-to-date atomic data.In particular, we calculate and present inelastic e+K collisional excitation cross-sections from the convergent close-coupling (CCC) and the B-Spline R-matrix (BSR) methods, and H+K collisions from the two-electron model (LCAO). We constructed a fine, extended grid of non-LTE abundance corrections based on 1D MARCS models that span 4000<Teff/K<8000, 0.50<logg<5.00, -5.00<[Fe/H]<+0.50, and applied the corrections to potassium abundances extracted from the literature. Results.In concordance with previous studies, we find severe non-LTE effects in the 7698Å line. The line is stronger in non-LTE and the abundance corrections can reach approximately -0.7dex for solar-metallicity stars such as Procyon. We determine potassium abundances in six benchmark stars, and obtain consistent results from different optical lines. We explore the effects of atmospheric inhomogeneity by computing for the first time a full 3D non-LTE stellar spectrum of KI lines for a test star. We find that 3D modeling is necessary to predict a correct shape of the resonance 7698Å line, but the line strength is similar to that found in 1D non-LTE.Conclusions. Our non-LTE abundance corrections reduce the scatter and change the cosmic trends of literature potassium abundances.In the regime [Fe/H]≤-1.0 the non-LTE abundances show a good agreement with the GCE model with yields from rotating massive stars. The reduced scatter of the non-LTE corrected abundances of a sample of solar twins shows that line-by-line differential analysis techniques cannot fully compensate for systematic LTE modelling errors; the scatter introduced by such errors introduces a spurious dispersion to K evolution.

Abstract Copyright: © ESO 2019

Journal keyword(s): stars: abundances - stars: late-type - line: formation - Galaxy: evolution - Galaxy: abundances

VizieR on-line data: <Available at CDS (J/A+A/627/A177): abund.dat nltegrid.dat states.dat bsrra.dat cccra.dat bsriora.dat ccciora.dat>

Simbad objects: 109

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019A&A...627A.177R and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact