SIMBAD references

2019ApJ...878..117D - Astrophys. J., 878, 117-117 (2019/June-3)

A new line-by-line general circulation model for simulations of diverse planetary atmospheres: initial validation and application to the exoplanet GJ 1132b.

DING F. and WORDSWORTH R.D.

Abstract (from CDS):

Exploring diverse planetary atmospheres requires modeling tools that are both accurate and flexible. Here, we develop a three-dimensional general circulation model (3D GCM) that, for the first time, uses a line-by-line approach to describe the radiative transfer. We validate our GCM by comparing with published results done by different 1D and 3D models. To demonstrate the versatility of the model, we apply the GCM to the hot Earth-sized exoplanet GJ 1132b and study its climate and circulation assuming an atmosphere dominated by abiotic oxygen (O2). Our simulations show that a minor CO2 composition can change the circulation pattern substantially, intensifying the equatorial superrotation in particular. Computation of the phase-resolved spectroscopy indicates that the vertical profile of the superrotating jet could be inferred in future spectrophotometric observations by the phase shift of the hotspot in the CO2 principle absorption band centered at 667 cm–1. We also show that atmospheric mass could potentially be constrained by the phase amplitude in the O2 vibrational fundamental band for planets with O2-rich atmospheres, although further experimental and/or theoretical O2-O2 collision-induced absorption data at high temperatures is needed to confirm this. More physical schemes, such as moist dynamics, will be implemented in the GCM in the future so that it can be used to tackle a wide variety of planetary climate problems.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): methods: numerical - planets and satellites: atmospheres - planets and satellites: terrestrial planets

Simbad objects: 6

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...878..117D and select 'bookmark this link' or equivalent in the popup menu


2021.07.27-01:21:16

© Université de Strasbourg/CNRS

    • Contact