SIMBAD references

2019ApJ...887L..11L - Astrophys. J., 887, L11-L11 (2019/December-2)

A mirage of the cosmic shoreline: Venus-like clouds as a statistical false positive for exoplanet atmospheric erosion.


Abstract (from CDS):

Near-term studies of Venus-like atmospheres with James Webb Space Telescope (JWST) promise to advance our knowledge of terrestrial planet evolution. However, the remote study of Venus in the solar system and the ongoing efforts to characterize gaseous exoplanets both suggest that high altitude aerosols can limit observational studies of lower atmospheres, and potentially make it challenging to recognize exoplanets as "Venus-like." To support practical approaches for exo-Venus characterization with JWST, we use Venus-like atmospheric models with self-consistent cloud formation of the seven TRAPPIST-1 exoplanets to investigate the atmospheric depth that can be probed using both transmission and emission spectroscopy. We find that JWST/Mid-IR Instrument Low Resolution Spectrometer secondary eclipse emission spectroscopy in the 6 µm opacity window could probe at least an order of magnitude deeper pressures than transmission spectroscopy, potentially allowing access to the subcloud atmosphere for the two hot innermost TRAPPIST-1 planets. In addition, we identify two confounding effects of sulfuric acid aerosols that may carry strong implications for the characterization of terrestrial exoplanets with transmission spectroscopy: (1) there exists an ambiguity between cloud-top and solid surface in producing the observed spectral continuum; and (2) the cloud-forming region drops in altitude with semimajor axis, causing an increase in the observable cloud-top pressure with decreasing stellar insolation. Taken together, these effects could produce a trend of thicker atmospheres observed at lower stellar insolation-a convincing false positive for atmospheric escape and an empirical "cosmic shoreline." However, developing observational and theoretical techniques to identify Venus-like exoplanets and discriminate them from stellar windswept worlds will enable advances in the emerging field of terrestrial comparative planetology.

Abstract Copyright: © 2019. The American Astronomical Society.

Journal keyword(s): Exoplanet atmospheres - Exoplanet astronomy - Exoplanet atmospheric composition - Exoplanet evolution - Extrasolar rocky planets - Exoplanets

Simbad objects: 5

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2019ApJ...887L..11L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact