SIMBAD references

2019MNRAS.485.4287J - Mon. Not. R. Astron. Soc., 485, 4287-4310 (2019/May-3)

60Fe in core-collapse supernovae and prospects for X-ray and gamma-ray detection in supernova remnants.

JONES S.W., MOLLER H., FRYER C.L., FONTES C.J., TRAPPITSCH R., EVEN W.P., COUTURE A., MUMPOWER M.R. and SAFI-HARB S.

Abstract (from CDS):

We investigate 60Fe in massive stars and core-collapse supernovae focussing on uncertainties that influence its production in 15, 20, and 25 M stars at solar metallicity. We find that the 60Fe yield is a monotonic increasing function of the uncertain 59Fe(n, γ)60Fe cross-section and that a factor of 10 reduction in the reaction rate results in a factor of 8-10 reduction in the 60Fe yield, while a factor of 10 increase in the rate increases the yield by a factor of 4-7. We find that none of the 189 simulations we have performed are consistent with a core-collapse supernova triggering the formation of the Solar system, and that only models using 59Fe(n, γ)60Fe cross-section that is less than or equal to that from NON-SMOKER can reproduce the observed 60Fe/26Al line flux ratio in the diffuse interstellar medium. We examine the prospects of detecting old core-collapse supernova remnants (SNRs) in the Milky Way from their gamma-ray emission from the decay of 60Fe, finding that the next generation of gamma-ray missions could be able to discover up to ∼100 such old SNRs as well as measure the 60Fe yields of a handful of known Galactic SNRs. We also predict the X-ray spectrum that is produced by atomic transitions in 60Co following its ionization by internal conversion and give theoretical X-ray line fluxes as a function of remnant age as well as the Doppler and fine-structure line broadening effects. The X-ray emission presents an interesting prospect for addressing the missing SNR problem with future X-ray missions.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): nuclear reactions, nucleosynthesis, abundances - stars: abundances - supernovae: general - gamma-rays: stars

Simbad objects: 3

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.485.4287J and select 'bookmark this link' or equivalent in the popup menu