SIMBAD references

2019MNRAS.487.1717F - Mon. Not. R. Astron. Soc., 487, 1717-1728 (2019/August-1)

A fundamental test for stellar feedback recipes in galaxy simulations.

FUJIMOTO Y., CHEVANCE M., HAYDON D.T., KRUMHOLZ M.R. and KRUIJSSEN J.M.D.

Abstract (from CDS):

Direct comparisons between galaxy simulations and observations that both reach scales <=100 pc are strong tools to investigate the cloud-scale physics of star formation and feedback in nearby galaxies. Here we carry out such a comparison for hydrodynamical simulations of a Milky Way-like galaxy, including stochastic star formation, H II region and supernova feedback, and chemical post-processing at 8 pc resolution. Our simulation shows excellent agreement with almost all kpc-scale and larger observables, including total star formation rates, radial profiles of CO, H I, and star formation through the galactic disc, mass ratios of the ISM components, both whole galaxy and resolved Kennicutt-Schmidt relations, and giant molecular cloud properties. However, we find that our simulation does not reproduce the observed decorrelation between tracers of gas and star formation on <=100 pc scales, known as the star formation 'uncertainty principle', which indicates that observed clouds undergo rapid evolutionary life cycles. We conclude that the discrepancy is driven by insufficiently strong pre-supernova feedback in our simulation, which does not disperse the surrounding gas completely, leaving star formation tracer emission too strongly associated with molecular gas tracer emission, inconsistent with observations. This result implies that the cloud-scale decorrelation of gas and star formation is a fundamental test for feedback prescriptions in galaxy simulations, one that can fail even in simulations that reproduce all other macroscopic properties of star-forming galaxies.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): hydrodynamics - methods: numerical - ISM: clouds - ISM: kinematics and dynamics - galaxies: evolution - galaxies: ISM

Simbad objects: 5

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.487.1717F and select 'bookmark this link' or equivalent in the popup menu