SIMBAD references

2019MNRAS.490.4918V - Mon. Not. R. Astron. Soc., 490, 4918-4934 (2019/December-3)

How AGN feedback drives the size growth of the first quasars.


Abstract (from CDS):

Quasars at z = 6 are powered by accretion on to supermassive black holes with masses M_ BH_ ∼109M. Their rapid assembly requires efficient gas inflow into the galactic nucleus, sustaining black hole accretion at a rate close to the Eddington limit, but also high central star formation rates. Using a set of cosmological 'zoom-in' hydrodynamic simulations performed with the moving mesh code AREPO, we show that z = 6 quasar host galaxies develop extremely tightly bound stellar bulges with peak circular velocities 300-500 km s–1 and half-mass radii ~0.5 kpc. Despite their high binding energy, we find that these compact bulges expand at z < 6, with their half-mass radii reaching ~5 kpc by z = 3. The circular velocity drops by factors of ≃2 from their initial values to 200-300 km s–1 at z ~3 and the stellar profile undergoes a cusp-core transformation. By tracking individual stellar populations, we find that the gradual expansion of the stellar component is mainly driven by fluctuations in the gravitational potential induced by bursty AGN feedback. We also find that galaxy size growth and the development of a cored stellar profile does not occur if AGN feedback is ineffective. Our findings suggest that AGN-driven outflows may have profound implications for the internal structure of massive galaxies, possibly accounting for their size growth, the formation of cored ellipticals as well as for the saturation of the MBH* seen at high-velocity dispersions σ*.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: numerical - quasars: supermassive black holes - galaxies: evolution - cosmology: theory

Simbad objects: 7

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2019MNRAS.490.4918V and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact