SIMBAD references

2020A&A...636A..15M - Astronomy and Astrophysics, volume 636A, 15-15 (2020/4-1)

Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX-T scaling relation.

MIGKAS K., SCHELLENBERGER G., REIPRICH T.H., PACAUD F., RAMOS-CEJA M.E. and LOVISARI L.

Abstract (from CDS):

The isotropy of the late Universe and consequently of the X-ray galaxy cluster scaling relations is an assumption greatly used in astronomy. However, within the last decade, many studies have reported deviations from isotropy when using various cosmological probes; a definitive conclusion has yet to be made. New, effective and independent methods to robustly test the cosmic isotropy are of crucial importance. In this work, we use such a method. Specifically, we investigate the directional behavior of the X-ray luminosity-temperature (LX-T) relation of galaxy clusters. A tight correlation is known to exist between the luminosity and temperature of the X-ray-emitting intracluster medium of galaxy clusters. While the measured luminosity depends on the underlying cosmology through the luminosity distance DL, the temperature can be determined without any cosmological assumptions. By exploiting this property and the homogeneous sky coverage of X-ray galaxy cluster samples, one can effectively test the isotropy of cosmological parameters over the full extragalactic sky, which is perfectly mirrored in the behavior of the normalization A of the LX-T relation. To do so, we used 313 homogeneously selected X-ray galaxy clusters from the Meta-Catalogue of X-ray detected Clusters of galaxies. We thoroughly performed additional cleaning in the measured parameters and obtain core-excised temperature measurements for all of the 313 clusters. The behavior of the LX-T relation heavily depends on the direction of the sky, which is consistent with previous studies. Strong anisotropies are detected at a≥4σ confidence level toward the Galactic coordinates (l, b)~(280°, -20°), which is roughly consistent with the results of other probes, such as Supernovae Ia. Several effects that could potentially explain these strong anisotropies were examined. Such effects are, for example, the X-ray absorption treatment, the effect of galaxy groups and low redshift clusters, core metallicities, and apparent correlations with other cluster properties, but none is able to explain the obtained results. Analyzing 105 bootstrap realizations confirms the large statistical significance of the anisotropic behavior of this sky region. Interestingly, the two cluster samples previously used in the literature for this test appear to have a similar behavior throughout the sky, while being fully independent of each other and of our sample. Combining all three samples results in 842 different galaxy clusters with luminosity and temperature measurements. Performing a joint analysis, the final anisotropy is further intensified (∼5σ), toward (l, b)~(303°, -27°), which is in very good agreement with other cosmological probes. The maximum variation of DL seems to be ∼16±3% for different regions in the sky. This result demonstrates that X-ray studies that assume perfect isotropy in the properties of galaxy clusters and their scaling relations can produce strongly biased results whether the underlying reason is cosmological or related to X-rays. The identification of the exact nature of these anisotropies is therefore crucial for any statistical cluster physics or cosmology study.

Abstract Copyright: © ESO 2020

Journal keyword(s): cosmology: observations - X-rays: galaxies: clusters - large-scale structure of Universe - galaxies: clusters: general - methods: statistical - catalogs

VizieR on-line data: <Available at CDS (J/A+A/636/A15): tablec1.dat>

Simbad objects: 329

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...636A..15M and select 'bookmark this link' or equivalent in the popup menu