SIMBAD references

2020A&A...636A.114F - Astronomy and Astrophysics, volume 636A, 114-114 (2020/4-1)

Deep search for hydrogen peroxide toward pre- and protostellar objects. Testing the pathway of grain surface water formation.

FUCHS G.W., WITSCH D., HERBERTH D., KEMPKES M., STANCLIK B., CHANTZOS J., LINNARTZ H., MENTEN K. and GIESEN T.F.

Abstract (from CDS):


Context. In the laboratory, hydrogen peroxide (HOOH) was proven to be an intermediate product in the solid-state reaction scheme that leads to the formation of water on icy dust grains. When HOOH desorbs from the icy grains, it can be detected in the gas phase. In combination with water detections, it may provide additional information on the water reaction network. Hydrogen peroxide has previously been found toward ρ Oph A. However, further searches for this molecule in other sources failed. Hydrogen peroxide plays a fundamental role in the understanding of solid-state water formation and the overall water reservoir in young stellar objects (YSOs). Without further HOOH detections, it is difficult to assess and develop suitable chemical models that properly take into account the formation of water on icy surfaces.
Aims. The objective of this work is to identify HOOH in YSOs and thereby constrain the grain surface water formation hypothesis.
Methods. Using an astrochemical model based on previous work in combination with a physical model of YSOs, the sources R CrA-IRS 5A, NGC C1333-IRAS 2A, L1551-IRS 5, and L1544 were identified as suitable candidates for an HOOH detection. Long integration times on the APEX 12m and IRAM 30m telescopes were applied to search for HOOH signatures in these sources.
Results. None of the four sources under investigation showed convincing spectral signatures of HOOH. The upper limit for HOOH abundance based on the noise level at the frequency positions of this molecule for the source R CrA-IRS 5A was close to the predicted value. For NGC 1333-IRAS 2A, L1544, and L1551-IRS 5, the model overestimated the hydrogen peroxide abundances.
Conclusions. HOOH remains an elusive molecule. With only one secure cosmic HOOH source detected so far, namely ρ Oph A, the chemical model parameters for this molecule cannot be sufficiently well determined or confirmed in existing models. Possible reasons for the nondetections of HOOH are discussed.

Abstract Copyright: © ESO 2020

Journal keyword(s): ISM: molecules - ISM: abundances - methods: observational - stars: formation - submillimeter: ISM - astrochemistry

CDS comments: Table 5 G15.01-067 not identified.

Simbad objects: 27

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...636A.114F and select 'bookmark this link' or equivalent in the popup menu


2021.08.05-00:02:51

© Université de Strasbourg/CNRS

    • Contact