SIMBAD references

2020A&A...643A..18D - Astronomy and Astrophysics, volume 643A, 18-18 (2020/11-1)

Constraining the orientation of the spin axes of extrasolar minor bodies 1I/2017 U1 ('Oumuamua) and 2I/Borisov.

DE LA FUENTE MARCOS C. and DE LA FUENTE MARCOS R.

Abstract (from CDS):


Context. The orientation of the spin axis of a comet is defined by the values of its equatorial obliquity and its cometocentric longitude of the Sun at perihelion. These parameters can be computed from the components of the nongravitational force caused by outgassing if the cometary activity is well characterized. The trajectories of known interstellar bodies passing through the Solar System show nongravitational accelerations.
Aims. The spin-axis orientation of 1I/2017 U1 ('Oumuamua) remains to be determined; for 2I/Borisov, the already released results are mutually exclusive. In both cases, the values of the components of the nongravitational force are relatively well constrained. Here, we investigate - within the framework of the forced precession model of a nonspherical cometary nucleus - the orientation of the spin axes of 'Oumuamua and 2I/Borisov using public orbit determinations that consider outgassing.
Methods. We applied a Monte Carlo simulation using the covariance matrix method together with Monte Carlo random search techniques to compute the distributions of equatorial obliquities and cometocentric longitudes of the Sun at perihelion of 'Oumuamua and 2I/Borisov from the values of the nongravitational parameters.
Results. We find that the equatorial obliquity of 'Oumuamua could be about 93°, if it has a very prolate (fusiform) shape, or close to 16°, if it is very oblate (disk-like). Different orbit determinations of 2I/Borisov gave obliquity values of 59° and 90°. The distributions of cometocentric longitudes were in general multimodal.
Conclusions. Our calculations suggest that the most probable spin-axis direction of 'Oumuamua in equatorial coordinates is (280°, +46°) if very prolate or (312°, -50°) if very oblate. Our analysis favors a prolate shape. For the orbit determinations of 2I/Borisov used here, we find most probable poles pointing near (275°, +65°) and (231°, +30°), respectively. Although our analysis favors an oblate shape for 2I/Borisov, a prolate one cannot be ruled out.

Abstract Copyright: © ESO 2020

Journal keyword(s): methods: data analysis - methods: numerical - celestial mechanics - comets: individual : 1I/2017 U1 ('Oumuamua) - comets: general - comets: individual : 2I/Borisov

Simbad objects: 1

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020A&A...643A..18D and select 'bookmark this link' or equivalent in the popup menu