SIMBAD references

2020ApJ...895...89L - Astrophys. J., 895, 89-89 (2020/June-1)

The flare-dominated accretion mode of a radio-bright candidate transitional millisecond pulsar.


Abstract (from CDS):

We report new simultaneous X-ray and radio continuum observations of 3FGL J0427.9-6704, a candidate member of the enigmatic class of transitional millisecond pulsars. These XMM-Newton and Australia Telescope Compact Array observations of this nearly edge-on, eclipsing low-mass X-ray binary were taken in the sub-luminous disk state at an X-ray luminosity of ∼1033(d/2.3kpc)2 erg s–1. Unlike the few well-studied transitional millisecond pulsars, which spend most of their disk state in a characteristic high or low accretion mode with occasional flares, 3FGL J0427.9-6704 stayed in the flare mode for the entire X-ray observation of ∼20 hr, with the brightest flares reaching ∼2 x 1034 erg s–1. The source continuously exhibited flaring activity on timescales of ∼10-100 s in both the X-ray and optical/ultraviolet (UV). No measurable time delay between the X-ray and optical/UV flares is observed, but the optical/UV flares last longer, and the relative amplitudes of the X-ray and optical/UV flares show a large scatter. The X-ray spectrum can be well-fit with a partially absorbed power law (Γ ∼ 1.4-1.5), perhaps due to the edge-on viewing angle. Modestly variable radio continuum emission is present at all epochs, and is not eclipsed by the secondary, consistent with the presence of a steady radio outflow or jet. The simultaneous radio/X-ray luminosity ratio of 3FGL J0427.9-6704 is higher than any known transitional millisecond pulsars and comparable to that of stellar-mass black holes of the same X-ray luminosity, providing additional evidence that some neutron stars can be as radio-loud as black holes.

Abstract Copyright: © 2020. The American Astronomical Society. All rights reserved.

Journal keyword(s): Low-mass x-ray binary stars - High energy astrophysics - Binary pulsars

Simbad objects: 17

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2020ApJ...895...89L and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact