SIMBAD references

2021MNRAS.501.5733R - Mon. Not. R. Astron. Soc., 501, 5733-5745 (2021/March-2)

Nucleosynthesis in magneto-rotational supernovae.

REICHERT M., OBERGAULINGER M., EICHLER M., ALOY M.A. and ARCONES A.

Abstract (from CDS):

We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on 2D simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron-rich and proton-rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak (A ∼ 195), in agreement with previous works. This model presents a jet-like explosion with proton-rich jets surrounded by neutron-rich material where the r-process occurs. We have estimated a lower limit for 56Ni of 2.5×10–2 M_☉, which is still well below the expected hypernova value. Longer simulations including the accretion disc evolution are required to get a final prediction. In addition, we have found that the late evolution is critical in a model with weak magnetic field in which late-ejected neutron-rich matter produces elements up to the second r-process peak. Even if we cannot yet provide conclusions for hypernova nucleosynthesis, our results agree with observations of old stars and radioactive isotopes in supernova remnants. This makes MR-SNe a good additional scenario to neutron star mergers for the synthesis of heavy elements and brings us closer to understand their origin and the role of MR-SNe in the early Galaxy nucleosynthesis.

Abstract Copyright: © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): MHD - nuclear reactions, nucleosynthesis, abundances - supernovae: general - gamma rays: general

Simbad objects: 7

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2021MNRAS.501.5733R and select 'bookmark this link' or equivalent in the popup menu