SIMBAD references

2021MNRAS.502..127L - Mon. Not. R. Astron. Soc., 502, 127-139 (2021/March-3)

The dynamic magnetosphere of Swift J1818.0-1607.

LOWER M.E., JOHNSTON S., SHANNON R.M., BAILES M. and CAMILO F.

Abstract (from CDS):

Radio-loud magnetars display a wide variety of radio-pulse phenomenology seldom seen among the population of rotation-powered pulsars. Spectropolarimetry of the radio pulses from these objects has the potential to place constraints on their magnetic topology and unveil clues about the magnetar radio emission mechanism. Here, we report on eight observations of the magnetar Swift J1818.0-1607 taken with the Parkes Ultra-Wideband Low receiver covering a wide frequency range from 0.7 to 4 GHz over a period of 5 months. The magnetar exhibits significant temporal profile evolution over this period, including the emergence of a new profile component with an inverted spectrum, two distinct types of radio emission mode switching, detected during two separate observations, and the appearance and disappearance of multiple polarization modes. These various phenomena are likely a result of ongoing reconfiguration of the plasma content and electric currents within the magnetosphere. Geometric fits to the linearly polarized position angle indicate we are viewing the magnetar at an angle of ∼99* from the spin axis, and its magnetic and rotation axes are misaligned by ∼112*. While conducting these fits, we found the position angle swing had reversed direction on MJD 59062 compared to observations taken 15 d earlier and 12 d later. We speculate this phenomena may be evidence the radio emission from this magnetar originates from magnetic field lines associated with two co-located magnetic poles that are connected by a coronal loop.

Abstract Copyright: © 2020 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

Journal keyword(s): stars: magnetars - stars: neutron - pulsars: individual: PSR J1818-1607

Status at CDS : Large table(s) will be appraised for possible ingestion in VizieR.

Simbad objects: 9

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2021MNRAS.502..127L and select 'bookmark this link' or equivalent in the popup menu


2021.06.21-22:59:24

© Université de Strasbourg/CNRS

    • Contact