2019ApJ...877..152B


Query : 2019ApJ...877..152B

2019ApJ...877..152B - Astrophys. J., 877, 152-152 (2019/June-1)

Red and reddened: ultraviolet through near-infrared observations of Type Ia supernova 2017erp.

BROWN P.J., HOSSEINZADEH G., JHA S.W., SAND D., VIEIRA E., WANG X., DAI M., DETTMAN K.G., MOULD J., UDDIN S., WANG L., ARCAVI I., BENTO J., BURNS C.R., DIAMOND T., HIRAMATSU D., HOWELL D.A., HSIAO E.Y., MARION G.H., McCULLY C., MILNE P.A., MIRZAQULOV D., RUITER A.J., VALENTI S. and XIANG D.

Abstract (from CDS):

We present space-based ultraviolet/optical photometry and spectroscopy with the Swift Ultra-Violet/Optical Telescope and Hubble Space Telescope (HST), respectively, along with ground-based optical photometry and spectroscopy and near-infrared spectroscopy of supernova SN 2017erp. The optical light curves and spectra are consistent with a normal SN Ia. Compared to previous photometric samples in the near-ultraviolet (NUV), SN 2017erp has UV colors that are redder than NUV-blue SNe Ia corrected to similar optical colors. The chromatic difference between SNe 2011fe and 2017erp is dominated by the intrinsic differences in the UV rather than the expected dust reddening. This chromatic difference is similar to the SALT2 color law, derived from rest-frame ultraviolet photometry of higher redshift SNe Ia. Differentiating between intrinsic UV diversity and dust reddening can have important consequences for determining cosmological distances with rest-frame ultraviolet photometry. This ultraviolet spectroscopic series is the first from HST of a normal, albeit reddened, NUV-red SN Ia and is important for analyzing SNe Ia with intrinsically redder NUV colors. We show model comparisons suggesting that metallicity could be the physical difference between NUV-blue and NUV-red SNe Ia, with emission peaks from reverse fluorescence near 3000 Å implying a factor of ∼10 higher metallicity in the upper layers of SN 2017erp compared to SN 2011fe. Metallicity estimates are very model dependent, however, and there are multiple effects in the UV. Further models and UV spectra of SNe Ia are needed to explore the diversity of SNe Ia, which show seemingly independent differences in the near-UV peaks and mid-UV flux levels.

Abstract Copyright: © 2019. The American Astronomical Society. All rights reserved.

Journal keyword(s): dust, extinction - supernovae: general - supernovae: individual: (SN2017erp, SN2011fe, SN2011by)

VizieR on-line data: <Available at CDS (J/ApJ/877/152): table1.dat>

Simbad objects: 10

goto Full paper

goto View the references in ADS

Number of rows : 10
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
#notes
1 SN 2009ig SN* 02 38 11.62 -01 18 45.3           SNIa-norm 149 1
2 SN 2005df SN* 04 17 37.85 -62 46 09.5     13.8     SNIa 78 1
3 SN 2015F SN* 07 36 15.76 -69 30 23.0           SNIa 79 1
4 SN 1999by SN* 09 21 52.07 +51 00 06.6   13.66       SNIap 294 1
5 SN 2010jn SN* 09 37 29.95 +23 09 38.8   17.29 16.85     SNIa 34 1
6 SN 2011by SN* 11 55 45.56 +55 19 33.8   12.97 12.95     SNIa-norm 89 1
7 SN 2011fe SN* 14 03 05.711 +54 16 25.22   10.12 10.06     SNIa-norm 676 1
8 SN 2017erp SN* 15 09 14.9 -11 20 03           SNIa-norm 38 0
9 NGC 5861 Sy2 15 09 16.09127 -11 19 17.9800   13.34 12.62 11.03 11.5 ~ 167 0
10 SN 2005cf SN* 15 21 33.12 -07 26 57.1   13.54       SNIa 281 1

To bookmark this query, right click on this link: simbad:objects in 2019ApJ...877..152B and select 'bookmark this link' or equivalent in the popup menu