Query : 2001A&A...376..697D

2001A&A...376..697D - Astronomy and Astrophysics, volume 376, 697-707 (2001/9-3)

Accretion powered spherical wind in general relativity.


Abstract (from CDS):

Using full general relativistic calculations, we investigate the possibility of generation of mass outflow from spherical accretion onto non-rotating black holes. Introducing a relativistic hadronic-pressure-supported steady, standing, spherically-symmetric shock surface around a Schwarzschild black hole as the effective physical barrier that may be responsible for the generation of spherical wind, we calculate the mass outflow rate R{dot}(m) in terms of three accretion parameters and one outflow parameter by simultaneously solving the set of general relativistic hydrodynamic equations describing spherically symmetric, transonic, polytropic accretion and wind around a Schwarzschild black hole. Not only do we provide a sufficiently plausible estimation of R{dot}(m), we also successfully study the dependence and variation of this rate on various physical parameters governing the flow. Our calculation indicates that independent of initial boundary conditions, the baryonic matter content of this shock-generated wind always correlates with post-shock flow temperature.

Abstract Copyright:

Journal keyword(s): accretion, accretion discs - outflow - black hole physics - general relativity - hydrodynamics

Simbad objects: 0

goto Full paper

goto View the reference in ADS

Number of rows : 0

To bookmark this query, right click on this link: simbad:objects in 2001A&A...376..697D and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact