Query : 2018A&A...615A.111O

2018A&A...615A.111O - Astronomy and Astrophysics, volume 615A, 111-111 (2018/7-1)

Estimating activity cycles with probabilistic methods. I. Bayesian generalised Lomb-Scargle periodogram with trend.


Abstract (from CDS):

Context. Period estimation is one of the central topics in astronomical time series analysis, in which data is often unevenly sampled. Studies of stellar magnetic cycles are especially challenging, as the periods expected in those cases are approximately the same length as the datasets themselves. The datasets often contain trends, the origin of which is either a real long-term cycle or an instrumental effect. But these effects cannot be reliably separated, while they can lead to erroneous period determinations if not properly handled.
Aims. In this study we aim at developing a method that can handle the trends properly. By performing an extensive set of testing, we show that this is the optimal procedure when contrasted with methods that do not include the trend directly in the model. The effect of the form of the noise (whether constant or heteroscedastic) on the results is also investigated.
Methods. We introduced a Bayesian generalised Lomb-Scargle periodogram with trend (BGLST), which is a probabilistic linear regression model using Gaussian priors for the coefficients of the fit and a uniform prior for the frequency parameter.
Results. We show, using synthetic data, that when there is no prior information on whether and to what extent the true model of the data contains a linear trend, the introduced BGLST method is preferable to the methods that either detrend the data or opt not to detrend the data before fitting the periodic model. Whether to use noise with other than constant variance in the model depends on the density of the data sampling and on the true noise type of the process.

Abstract Copyright: © ESO 2018

Journal keyword(s): methods: statistical - methods: numerical - stars: activity

Simbad objects: 2

goto Full paper

goto View the reference in ADS

Number of rows : 2
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
1 * 54 Psc PM* 00 39 21.8055114029 +21 15 01.716052732 7.29 6.71 5.88 5.21 4.82 K0.5V 541 1
2 HD 37394 BY* 05 41 20.3357283721 +53 28 51.810629854 7.58 7.07 6.23 5.54 5.11 K1 306 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...615A.111O and select 'bookmark this link' or equivalent in the popup menu


© Université de Strasbourg/CNRS

    • Contact