2018A&A...619A..20M


Query : 2018A&A...619A..20M

2018A&A...619A..20M - Astronomy and Astrophysics, volume 619A, 20-20 (2018/11-1)

Probing the nature and origin of dust in the reddened quasar IC 4329A with global modelling from X-ray to infrared.

MEHDIPOUR M. and COSTANTINI E.

Abstract (from CDS):

Cosmic dust is a key tracer of structure formation and evolution in the universe. In active galactic nuclei (AGN) the origin and role of dust are uncertain. Here, we have studied dust in the X-ray bright and reddened type-1 quasar IC 4329A, which exhibits an ionised AGN wind. We incorporated high-resolution X-ray and mid-IR spectroscopy, combined with broad-band continuum modelling, to investigate the properties of dust in this AGN. We used new chandra HETGS observations taken in June 2017, as well as archival data from XMM-Newton, Swift, HST, Spitzer, IRAS, and Herschel for our IR-optical-UV-X-ray modelling. Two distinct components of dust in IC 4329A are found. One component is in the interstellar medium (ISM) of the host galaxy, and the other is a nuclear component in the AGN torus and its associated wind. The emitting dust in the torus is evident in mid-IR emission (9.7 and 18µm features), while dust in the wind is present through both reddening and X-ray absorption (O, Si, and Fe edge features). The gas depletion factors into dust for O, Si, and Fe are measured. We derive an intrinsic reddening E(B-V)~=1.0, which is most consistent with a grey (flat) extinction law. The AGN wind consists of three ionisation components. From analysis of long-term changes in the wind, we determine limits on the location of the wind components. The two lowest ionisation components are likely carriers of dust from the AGN torus. We find that the dust in the nuclear component of IC 4329A is different from dust in the Milky Way. The dust grains in the AGN torus and wind are likely larger than the standard Galactic dust, and are in a porous composite form (containing amorphous silicate with iron and oxygen). This can be a consequence of grain coagulation in the dense nuclear environment of the AGN.

Abstract Copyright: © ESO 2018

Journal keyword(s): X-rays: galaxies - galaxies: active - techniques: spectroscopic - dust, extinction

Simbad objects: 8

goto Full paper

goto View the references in ADS

Number of rows : 8
N Identifier Otype ICRS (J2000)
RA
ICRS (J2000)
DEC
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2021
#notes
1 NAME SMC G 00 52 38.0 -72 48 01   2.79 2.2     ~ 9858 1
2 ESO 113-10 Sy1 01 05 16.8725940848 -58 26 15.265543353   14.63 14.6 13.35   ~ 52 0
3 NGC 3227 GiP 10 23 30.57 +19 51 54.3   12.61 11.79     ~ 1575 2
4 NGC 4151 Sy1 12 10 32.5771747733 +39 24 21.057727323   12.18 11.48     ~ 3463 2
5 IC 4329 BiC 13 49 05.314 -30 17 45.20   11.96 11.54 10.31   ~ 181 2
6 ESO 445-50 Sy1 13 49 19.2607281800 -30 18 34.224136831   13.81 13.66 12.18   ~ 747 0
7 NAME Circinus Galaxy Sy2 14 13 09.906 -65 20 20.47   10.89 9.84 10.6 10.0 ~ 1050 2
8 NGC 5548 Sy1 14 17 59.5401093128 +25 08 12.600227883   14.35 13.73     ~ 2467 0

    Equat.    Gal    SGal    Ecl

To bookmark this query, right click on this link: simbad:objects in 2018A&A...619A..20M and select 'bookmark this link' or equivalent in the popup menu


2021.07.29-16:36:23

© Université de Strasbourg/CNRS

    • Contact