Query : 2015A&A...582A..26G

2015A&A...582A..26G - Astronomy and Astrophysics, volume 582A, 26-26 (2015/10-1)

The abundance of 26Al-rich planetary systems in the Galaxy.


Abstract (from CDS):

One of the most puzzling properties of the solar system is the high abundance at its birth of 26Al, a short-lived radionuclide with a mean life of 1Myr. Now decayed, it has left its imprint in primitive meteoritic solids. The origin of 26Al in the early solar system has been debated for decades and strongly constrains the astrophysical context of the Sun and planets formation. We show that, according to the present understanding of star-formation mechanisms, it is very unlikely that a nearby supernova has delivered 26Al into the nascent solar system. A more promising model is the one whereby the Sun formed in a wind-enriched, 26Al-rich dense shell surrounding a massive star (M>32M). We calculate that the probability of any given star in the Galaxy being born in such a setting, corresponding to a well-known mode of star formation, is of the order of 1%. It means that our solar system, though not the rule, is relatively common and that many exo-planetary systems in the Galaxy might exhibit comparable enrichments in 26Al. Such enrichments played an important role in the early evolution of planets because 26Al is the main heat source for planetary embryos.

Abstract Copyright:

Journal keyword(s): meteorites, meteors, meteoroids - stars: formation - stars: protostars - planetary systems

Simbad objects: 3

goto Full paper

goto View the references in ADS

Number of rows : 3
N Identifier Otype ICRS (J2000)
ICRS (J2000)
Mag U Mag B Mag V Mag R Mag I Sp type #ref
1850 - 2024
1 M 42 HII 05 35 17 -05 23.4           ~ 4083 0
2 SN 1987A SN* 05 35 28.020 -69 16 11.07           SNIIpec 4945 2
3 SNR G006.4-00.1 SNR 18 00 31.2011719 -23 25 48.001099           ~ 738 1

To bookmark this query, right click on this link: simbad:objects in 2015A&A...582A..26G and select 'bookmark this link' or equivalent in the popup menu