SIMBAD references

2014MNRAS.444.1518V - Mon. Not. R. Astron. Soc., 444, 1518-1547 (2014/October-3)

Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe.

VOGELSBERGER M., GENEL S., SPRINGEL V., TORREY P., SIJACKI D., XU D., SNYDER G., NELSON D. and HERNQUIST L.

Abstract (from CDS):

We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5Mpc)3, has a dark mass resolution of 6.26x106M, and an initial baryonic matter mass resolution of 1.26x106M. At z = 0 gravitational forces are softened on scales of 710pc, and the smallest hydrodynamical gas cells have an extent of 48pc. We follow the dynamical evolution of 2x18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

Abstract Copyright: © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society (2014)

Journal keyword(s): methods: numerical - cosmology: theory

Simbad objects: 2

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2014MNRAS.444.1518V and select 'bookmark this link' or equivalent in the popup menu