SIMBAD references

2018AJ....156..149B - Astron. J., 156, 149-149 (2018/October-0)

Material properties for the interiors of massive giant planets and brown dwarfs.

BECKER A., BETHKENHAGEN M., KELLERMANN C., WICHT J. and REDMER R.

Abstract (from CDS):

We present thermodynamic material and transport properties for the extreme conditions prevalent in the interiors of massive giant planets and brown dwarfs. They are obtained from extensive ab initio simulations of hydrogen-helium mixtures along the isentropes of three representative objects. In particular, we determine the heat capacities, the thermal expansion coefficient, the isothermal compressibility, and the sound velocity. Important transport properties such as the electrical and thermal conductivity, opacity, and shear viscosity are also calculated. Further results for associated quantities, including magnetic and thermal diffusivity, kinematic shear viscosity, as well as the static Love number k2 and the equidistance, are presented. In comparison to Jupiter-mass planets, the behavior inside massive giant planets and brown dwarfs is stronger dominated by degenerate matter. We discuss the implications on possible dynamics and magnetic fields of those massive objects. The consistent data set compiled here may serve as a starting point to obtain material and transport properties for other substellar H-He objects with masses above one Jovian mass and finally may be used as input for dynamo simulations.

Abstract Copyright: © 2018. The American Astronomical Society. All rights reserved.

Journal keyword(s): brown dwarfs - conduction - dense matter - equation of state - planets and satellites: interiors - planets and satellites: magnetic fields

VizieR on-line data: <Available at CDS (J/AJ/156/149): table1.dat table2.dat table4.dat>

Status at CDS:  

Simbad objects: 3

goto Full paper

goto View the reference in ADS

To bookmark this query, right click on this link: simbad:2018AJ....156..149B and select 'bookmark this link' or equivalent in the popup menu


2020.06.01-08:37:31

© Université de Strasbourg/CNRS

    • Contact