SIMBAD references

2020MNRAS.491.2391C - Mon. Not. R. Astron. Soc., 491, 2391-2402 (2020/January-2)

Super-Earth ingestion can explain the anomalously high metal abundances of M67 Y2235.

CHURCH R.P., MUSTILL A.J. and LIU F.

Abstract (from CDS):

We investigate the hypothesis that ingestion of a terrestrial or super-Earth planet could cause the anomalously high metal abundances seen in a turn-off star in the open cluster M67, when compared to other turn-off stars in the same cluster. We show that the mass of the convective envelope of the star is likely only 3.45 x 10^{-3} {M_{☉ }}, and hence 5.2 M_⊕of rock is required to obtain the observed 0.128 dex metal enhancement. Rocky planets dissolve entirely in the convective envelope if they enter it with sufficiently tangential orbits: we find that the critical condition for dissolution is that the planet's radial velocity must be less than 40 per cent of its total velocity at the stellar surface; or, equivalently, the impact parameter must be greater than about 0.9. We model the delivery of rocky planets to the stellar surface both by planet-planet scattering in a realistic multiplanet system, and by Lidov-Kozai cycles driven by a more massive planetary or stellar companion. In both cases almost all planets that are ingested arrive at the star on grazing orbits and hence will dissolve in the surface convection zone. We conclude that super-Earth ingestion is a good explanation for the metal enhancement in M67 Y2235, and that a high-resolution spectroscopic survey of stellar abundances around the turn-off and main sequence of M67 has the potential to constrain the frequency of late-time dynamical instability in planetary systems.

Abstract Copyright: © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society

Journal keyword(s): methods: numerical - planet-star interactions - stars: evolution - planetary systems - open clusters and associations: individual: M67

Simbad objects: 14

goto Full paper

goto View the references in ADS

To bookmark this query, right click on this link: simbad:2020MNRAS.491.2391C and select 'bookmark this link' or equivalent in the popup menu